216 research outputs found

    A High-Throughput Screen Identifies a New Natural Product with Broad-Spectrum Antibacterial Activity

    Get PDF
    Due to the inexorable invasion of our hospitals and communities by drug-resistant bacteria, there is a pressing need for novel antibacterial agents. Here we report the development of a sensitive and robust but low-tech and inexpensive high-throughput metabolic screen for novel antibiotics. This screen is based on a colorimetric assay of pH that identifies inhibitors of bacterial sugar fermentation. After validation of the method, we screened over 39,000 crude extracts derived from organisms that grow in the diverse ecosystems of Costa Rica and identified 49 with reproducible antibacterial effects. An extract from an endophytic fungus was further characterized, and this led to the discovery of three novel natural products. One of these, which we named mirandamycin, has broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Vibrio cholerae, methicillin-resistant Staphylococcus aureus, and Mycobacterium tuberculosis. This demonstrates the power of simple high throughput screens for rapid identification of new antibacterial agents from environmental samples

    A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    Get PDF
    While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm

    The soluble proteome of tobacco Bright Yellow-2 cells undergoing H2O2-induced programmed cell death

    Get PDF
    Plant programmed cell death (PCD) is a genetically controlled process that plays an important role in development and stress responses. Reactive oxygen species (ROS) are key inducers of PCD. The addition of 50 mM H2O2 to tobacco Bright Yellow-2 (TBY-2) cell cultures induces PCD. A comparative proteomic analysis of TBY-2 cells treated with 50 mM H2O2 for 30 min and 3 h was performed. The results showed early down-regulation of several elements in the cellular redox hub and inhibition of the protein repair–degradation system. The expression patterns of proteins involved in the homeostatic response, in particular those associated with metabolism, were consistently altered. The changes in abundance of several cytoskeleton proteins confirmed the active role of the cytoskeleton in PCD signalling. Cells undergoing H2O2-induced PCD fail to cope with oxidative stress. The antioxidant defence system and the anti-PCD signalling cascades are inhibited. This promotes a genetically programmed cell suicide pathway. Fifteen differentially expressed proteins showed an expression pattern similar to that previously observed in TBY-2 cells undergoing heat shock-induced PCD. The possibility that these proteins are part of a core complex required for PCD induction is discussed

    Awareness of cognitive decline trajectories in asymptomatic individuals at risk for AD

    Get PDF
    Background: Lack of awareness of cognitive decline (ACD) is common in late-stage Alzheimer’s disease (AD). Recent studies showed that ACD can also be reduced in the early stages. Methods: We described different trends of evolution of ACD over 3 years in a cohort of memory-complainers and their association to amyloid burden and brain metabolism. We studied the impact of ACD at baseline on cognitive scores’ evolution and the association between longitudinal changes in ACD and in cognitive score. Results: 76.8% of subjects constantly had an accurate ACD (reference class). 18.95% showed a steadily heightened ACD and were comparable to those with accurate ACD in terms of demographic characteristics and AD biomarkers. 4.25% constantly showed low ACD, had significantly higher amyloid burden than the reference class, and were mostly men. We found no overall effect of baseline ACD on cognitive scores’ evolution and no association between longitudinal changes in ACD and in cognitive scores. Conclusions: ACD begins to decrease during the preclinical phase in a group of individuals, who are of great interest and need to be further characterized. Trial registration: The present study was conducted as part of the INSIGHT-PreAD study. The identification number of INSIGHT-PreAD study (ID-RCB) is 2012-A01731-42

    SLITRK2, an X-linked modifier of the age at onset in C9orf72 frontotemporal lobar degeneration

    Get PDF
    The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms

    Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. <it>Synechocystis </it>sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in <it>Synechocystis </it>have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes.</p> <p>Results</p> <p>We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in <it>Synechocystis</it>. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of <it>Synechocystis </it>genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in <it>Synechocystis </it>under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes.</p> <p>Conclusion</p> <p>We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in <it>Synechocystis</it>.</p

    Evaluating the Cellular Targets of Anti-4-1BB Agonist Antibody during Immunotherapy of a Pre-Established Tumor in Mice

    Get PDF
    Manipulation of the immune system represents a promising avenue for cancer therapy. Rational advances in immunotherapy of cancer will require an understanding of the precise correlates of protection. Agonistic antibodies against the tumor necrosis factor receptor family member 4-1BB are emerging as a promising tool in cancer therapy, with evidence that these antibodies expand both T cells as well as innate immune cells. Depletion studies have suggested that several cell types can play a role in these immunotherapeutic regimens, but do not reveal which cells must directly receive the 4-1BB signals for effective therapy.We show that re-activated memory T cells are superior to resting memory T cells in control of an 8-day pre-established E.G7 tumor in mice. We find that ex vivo activation of the memory T cells allows the activated effectors to continue to divide and enter the tumor, regardless of antigen-specificity; however, only antigen-specific reactivated memory T cells show any efficacy in tumor control. When agonistic anti-4-1BB antibody is combined with this optimized adoptive T cell therapy, 80% of mice survive and are fully protected from tumor rechallenge. Using 4-1BB-deficient mice and mixed bone marrow chimeras, we find that it is sufficient to have 4-1BB only on the endogenous host alphabeta T cells or only on the transferred T cells for the effects of anti-4-1BB to be realized. Conversely, although multiple immune cell types express 4-1BB and both T cells and APC expand during anti-4-1BB therapy, 4-1BB on cells other than alphabeta T cells is neither necessary nor sufficient for the effect of anti-4-1BB in this adoptive immunotherapy model.This study establishes alphabeta T cells rather than innate immune cells as the critical target in anti-4-1BB therapy of a pre-established tumor. The study also demonstrates that ex vivo activation of memory T cells prior to infusion allows antigen-specific tumor control without the need for reactivation of the memory T cells in the tumor

    The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803.

    Get PDF
    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu)
    corecore